Should we use bibliometric indices to evaluate research?

Denis Bouyssou CNRS-LAMSADE

> LINA February 2014

(based on joint work with Thierry Marchant, Ghent University, Belgium)

If you do not know Thierry...

Outline

- Bibliometrics
- 2 Model & Results
- 3 Discussion

Outline

- Bibliometrics
- 2 Model & Results
- 3 Discussion

Academia

General context

- ullet globalization
- knowledge economy
- financial and economic crisis

Academia

General context

- globalization
- knowledge economy
- financial and economic crisis

Impacts on academia

- budget cuts
- arrival of new players (China, India)
- increased mobility of staff & students
- proliferation of evaluation & funding agencies
- proliferation of indices & rankings
- industrialization of academia

Industrialization of academia

Symptoms

- AERES + LRU + ANR + fusions of Universities + teaching in English + LESR
- students' demonstrations (Printemps érable & UK) + students' debt crisis
- fraud & plagiarism increase
- evaluation fever
 - bibliometric indices everywhere

Two extreme positions

- bibliometrics is an absolute evil
- bibliometrics brings objectivity and fairness

Two extreme positions

- bibliometrics is an absolute evil
- bibliometrics brings objectivity and fairness

Both positions are plainly wrong!

Bibliometrics defined

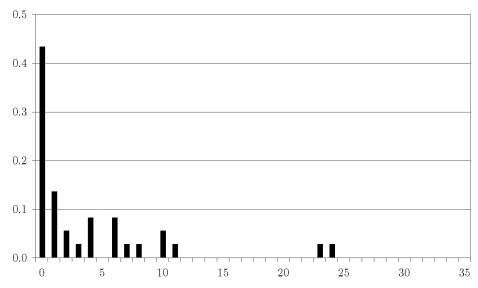
 \bullet using mathematical and statistical techniques to study publishing and communication patterns

Bibliometrics defined

• using mathematical and statistical techniques to study publishing and communication patterns

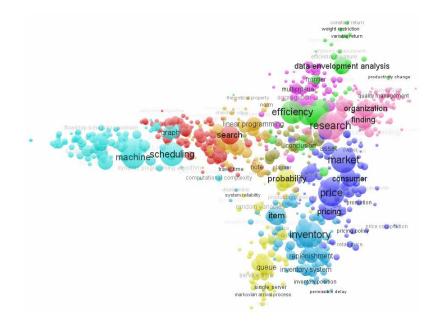
The field of Bibliometrics

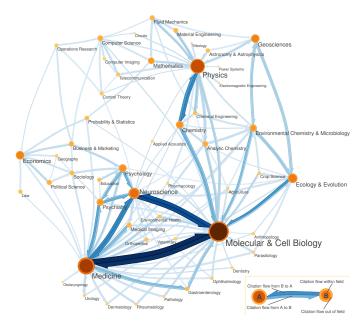
- active scientific field
 - journals: Scientometrics, Journal of Informetrics, Journal of the American Society for Information Science and Technology, Research Policy, . . .
 - ISSI: International Society for Scientometrics and Informetrics
 - regular International Conferences



Some research questions

- bibliometric laws: Lotka, Bradford
- social network of {scientists, papers, fields}
- efficiency of research policy of a country
- factors influencing transfer of knowledge towards industry
- which journals should libraries subscribe to?
- impact of open access on diffusion on knowledge
- strong and weak research fields of a country
- emerging fields


Journal of Economic Literature 2008 IF (3.65) (frequency of number of citations in 2008 to paper published in 2006–2007)


Bart summarizes

I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymore I will not use the IF of journals to evaluate papers anymor

Map of 800 terms co-occurrencing in abstracts of OR journals (VOSviewer)

Map of ISI fields (VOSviewer)

Evaluative bibliometrics and bibliometric indices

Evaluative bibliometrics

- publications in journals are the central research output
- citations to publications are important signs of recognition
- the more publication & citations you have the better

"bibliometrically limited view of a complex reality" (A. van Raan, 2005)

Evaluative bibliometrics and bibliometric indices

Evaluative bibliometrics

- publications in journals are the central research output
- citations to publications are important signs of recognition
- the more publication & citations you have the better

"bibliometrically limited view of a complex reality" (A. van Raan, 2005)

- count publications & citations
- summarize these counts by indices

Evaluative bibliometrics and bibliometric indices

Databases

- Web of Science (ISI, Thomson Reuters)
- Scopus (Elsevier)
- Google Scholar (PoP + Google)

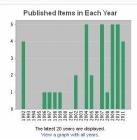
Record publications and citations

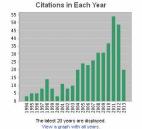
Online uses during evaluation committees by often uninformed users

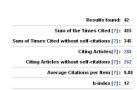
DB: 456 papers, 3464 citations, h-index = 27

	Author impact ar	nalysis - Perform a	citation and	alysis for one o	r more authors				
uthor impact	Author's name:	d bouyss							
			ou						
	Exclude these n	ames:							
ulti-query center /eb browser	Year of publicat	ion between:	0 ar	nd: 0					
ed browser	Results								
heck for updates	Papers:		es/paper:	7.60	h-index:		d bouys		
	Citations:		es/author:	2181.20	g-index:		Query d Papers:	late: 2013-05-24	
elp contents	Years:		rs/author:	200.63	hc-index:	10	Citation		
/hat's new?	Cites/year:	61.86 Autho	ors/paper:	3.06	hI,norm:	21	Years: 5	6	
	Cites *	Per year	GS Rank	Authors				Title	Yea
P FAQ	☑ h 329	23.50	1	D Bouyssou				Evaluation and Decision Models: A Critical Perpective	200
P web site	☑ h 238	9.92	2	D Bouyssou				Building criteria: A prerequisite for MCDA	199
P book	☑ h 170	6.07	3	D Bouyssou				Some remarks on the notion of compensation in MCDM	198
F DOOK	☑ h 151	18.88	4	D Bouyssou,	T Marchant, M P	irlot, A T	souki	Evaluation and decision models with multiple criteria: Stepping stones for the analyst	200
	☑ h 105	15.00	5	F Aleskerov,	D Bouyssou, B M	tonjardet	, D B	Utility maximization, choice and preference	200
	☑ h 102	3.64	7	D Bouyssou,	JC Vansnick			Noncompensatory and generalized noncompensatory preference structures	198
	☑ h 98	6.53	6	D Bouyssou				Using DEA as a tool for MCDM: some remarks	199
	☑ h 92	5.11	8	D Bouyssou				Outranking relations: do they have special properties?	199
	☑ h 80	3.64	10	D Bouyssou				Ranking methods based on valued preference relations: a characterization of the n	199
	☑ h 78	6.50	9	D Bouyssou,	M Pirlot			Nontransitive decomposable conjoint measurement	200
	☑ h 71	2.54	11	B Roy, D Box	uyssou			Comparison of two decision-aid models applied to a nuclear power plant siting exam	198
	☑ h 61	2.77	14	D Bouyssou,	P Perny			Ranking methods for valued preference relations: A characterization of a method b	199
	☑ h 56	8.00	12	D Bouyssou,	T Marchant			An axiomatic approach to noncompensatory sorting methods in MCDM, II: More th	200
	☑ h 56	14.00	13	JC Billaut, D	Bouyssou, P Vinc	ke		Should you believe in the Shanghai ranking?	201
	☑ h 49	1.96	15	D Bouyssou				Modelling inaccurate determination, uncertainty, imprecision using multiple criteria	198
	☑ h 49	2.23	18	D Bouyssou				On some properties of outranking relations based on a concordance-discordance pr	199
	☑ h 48	2.82	20	D Bouyssou.	D Vincke			Ranking alternatives on the basis of preference relations: a progress report with s	199

DB: 42 papers, 415 citations, h-index = 12


Web of Science®


<< Back to previous page


Citation Report AU=(bouyssou d*)

Timespan=All years, Databases=IC, SCI-EXPANDED, A&HCI, SSCI, CPCI-SSH, CPCI-S.

This report reflects citations to source items indexed within Web of Science, Perform a Cited Reference Search to include citations to items not indexed within Web of Science.

DB: 2929 citations, h-index = 27

Denis Bouyssou Modifier

CNRS LAMSADE Modifier

aide à la décision - analyse multicritère Modifier Adresse e-mail validée de lamsade dauphine fr Modifier Mon Drofil est Drivé Modifier - Alouter une page d'accueil

Citations Citations des articles de l'auteur Toutes Depuis 2008 2929 Citations 1317 indice h 27 17 indice it0 33 1986 Sélectionner : Tous, Aucun Actions • Afficher: 20 Table 1-20 Suivante > Titre/Auteur Citée par Année Evaluation and Decision Models: A Critical Perpective D Bouyssou 330 2000 Kluwer Academic Pub. Building criteria: A prerequisite for MCDA D Bouyssou 238 1990 Readings in multiple criteria decision aid, 58-80 Some remarks on the notion of compensation in MCDM D Bouyssou 170 1986 European Journal of Operational Research 26 (1), 150-160 Evaluation and decision models with multiple criteria: Stepping stones for the analyst 151 2006 D Bouyssou, T Marchant, M Pirlot, A Tsoukias, P Vincke International Series in Operations Research and Management Science 86

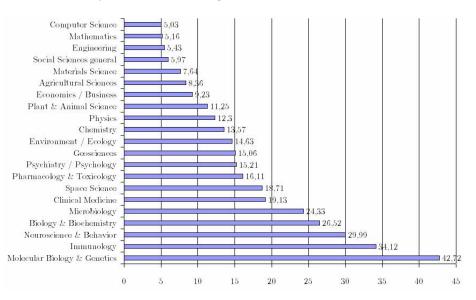
Google scholar

Rechercher des auteurs

Mes citations - Aide

Pirlot Marc	Ajouter - 2
Silvano Martello	Ajouter - D
Roman Slowinski	Ajouter - 2
Elke Weber	Ajouter - 2
birger Wernerfelt	Ajouter - 2
Philip M. Parker	Ajouter - 2
Mousseau Vincent	Ajouter - 2
José Rui Figueira	Ajouter - 2
Miguel Couceiro	Ajouter - 2

DB: 42 papers, 390 citations, h-index = 9


Bouyssou, De	nis						
Barrana			▼ Find potent				
Personal Name	Bouve	enu Danie					
Other formats		Bouyssou, Denis					
Author ID		6701372324					
F-mail		bouyssou@lamsade.dauphine.fr					
Affiliation		Centre National de la Re					
Research							
Documents	42	View Author Evalua	tor 🖶 Add tomylist 🦫 Set alert 🔝 Set feed				
References	748						
Citations	390 to	tal citations by <mark>272</mark> docur	ments 📶 View citation overview 🐤 Set alert				
h Index	9	View h-Graph	The #Index considers Scopus articles published after 1995.				
Co-authors	21						
Web search	1028						
Subject area	Mathe	on Sciences matics Sciences					

A few words of warning

Databases

- cleaning is needed and not easy to do!
 - spelling errors + incorrect citations
 - names: diacritical signs, T_EX ligatures, transliteration, homonyms (Martel in Québec, Kim or Park in Korea)
 - correct affiliations are extremely difficult to determine
 - counting: original articles, letters, notes, erratum, obituaries, reviews, editorials
 - lost citations (up to 30%)
- important differences between fields
 - publication intensity
 - citation intensity & behavior
 - longevity of papers (months vs decades)

Citation intensity for the 21 ISI categories

A few more words of warning

Science is not immune to social effects

- peer review has documented defects (tests / retests)
- motives for citation are diverse (negative citations, perfunctory citations)
- self citations and network effects
- manipulation of the JIF by editors

Humbolt & Merton vs Bourdieu

A few more words of warning

Science is not immune to social effects

- peer review has documented defects (tests / retests)
- motives for citation are diverse (negative citations, perfunctory citations)
- self citations and network effects
- manipulation of the JIF by editors

Humbolt & Merton vs Bourdieu

Nightmares

- how to deal with multiple authors (sometimes more than 1000)
- how to deal with multiple affiliations
- what is an author? (ghost authors, unequal contributions, ...)
- people react and adapt quickly: perverse effects are pervasive
- epistemology: normal science vs paradigm shifts (Kuhn)

Examples of papers with many authors

Papers with highest numbers of authors, by year, 2002-2011

Year	Paper	Number of authors
2011	ATLAS Collaboration (G. Aad, et al.), "Search for quark contact interactions in dijet angular distributions in pp collisions at root s=7 TeV measured with the ATLAS detector," Phys. Lett. B, 694(4-5): 327-45, 2011.	3,179
2010	ATLAS Collaboration (G. Aad, et al.), "Charged-particle multiplicities in pp interactions at root s=900 GeV measured with the ATLAS detector at the LHC ATLAS Collaboration," Phys. Lett. B, 688(1): 21-42, 2010.	3,221
2009	LIGO Sci. Collaboration, Virgo Collaboration (B.P. Abbott, et al.), "An upper limit on the stochastic gravitational-wave background of cosmological origin," Nature, 460(7258): 990-4, 2009.	657
2008	CMS Collaboration (S. Chatrchyan, et al.), "The CMS experiment at the CERN LHC," J. Instrumentation, 3: No. S08004, 2008.	3,101
2007	CMS Collaboration (G.L. Bayatian, et al.), "CMS physic technical design report, volume II: Physics performance," J. Phys. GNucl. Part. Phys.	2,011
2006	ALEPH, DELPHI, L3, OPAL, and SLD Collaborations (S. Schael, et al.), "Precision electroweak measurements on the Z resonance," Phys. Reports, 427(5-6): 257-454, 2006.	2,517
2005	Antiretroviral Therapy Cohort Collaboration (D. Costagliola, et al.), "Incidence of tuberculosis among HiV-infected patients receiving highly active antiretroviral therapy in Europe and North America," Clin. Infect. Diseases, 41(12): 1772-82, 2005.	859
2004	MEGA Study Group (H. Nakamura, et al.), "Design and baseline characteristics of a study of primary prevention of coronary events with pravastatin among Japanese with mildly elevated cholesterol levels," Circulation J., 68(9): 860-7, 2004.	2,459
2003	D. Acosta, et al. (CDF II Collaboration), "Measurement of the mass difference $M(D(s)(+))$ - $m(D(+))$ at CDF II," Phys. Rev. D, 68(7): No 072004, 2003.	818
2002	B. Aubert, et al. (BABAR Collaboration), "The BABAR detector," Nucl. Instr. Meth. Phys. Res. Sect. A, 479(1): 1-116, 2002.	824

Bibliometric indices

Hypotheses

- all above problems have been taken care of
- you have a good, verified, and cleaned database

Many possible indices

- counting of papers
- counting of citations
- sum of Impact Factors
- Markovian indices (PageRank)
- h-index and its variants

Bibliometric indices

Hypotheses

- all above problems have been taken care of
- you have a good, verified, and cleaned database

Many possible indices

- counting of papers
- counting of citations
- sum of Impact Factors
- Markovian indices (PageRank)
- h-index and its variants

Bibliometric Indices

- what properties?
- how to compare them?
- how to combine them?

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)
 - author f: 4 papers with 4 citations each
 - author g: 3 papers with 6 citations each
- $i_h(f) = 4 > i_h(q) = 3$

Evaluation of authors

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)
 - author f: 4 papers with 4 citations each
 - author g: 3 papers with 6 citations each
- $i_h(f) = 4 > i_h(q) = 3$
- both authors publish a new paper with 6 citations
- $i_h(f^*) = 4 = i_h(g^*) = 4$

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)
 - author f: 4 papers with 4 citations each
 - author g: 3 papers with 6 citations each
- $i_h(f) = 4 > i_h(g) = 3$
- both authors publish a new paper with 6 citations
- $i_h(f^*) = 4 = i_h(g^*) = 4$
- both authors publish a new paper with 6 citations
- $i_h(f^{**}) = 4 < i_h(g^{**}) = 5$

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)
 - author f: 4 papers with 4 citations each
 - author g: 3 papers with 6 citations each
- $i_h(f) = 4 > i_h(q) = 3$
- both authors publish a new paper with 6 citations
- $i_h(f^*) = 4 = i_h(g^*) = 4$
- both authors publish a new paper with 6 citations
- $i_h(f^{**}) = 4 < i_h(g^{**}) = 5$

Conclusion

• Independence is violated

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)

Department $a = (a_1, a_2)$

- author a_1 : 4 papers each one cited 4 times
- author a_2 : 4 papers each one cited 4 times
 - h-index of both authors is 4
 - h-index of the department is 4

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)

Department $a = (a_1, a_2)$

- author a_1 : 4 papers each one cited 4 times
- author a_2 : 4 papers each one cited 4 times
 - h-index of both authors is 4
 - h-index of the department is 4

Department $b = (b_1, b_2)$

- author b_1 : 3 papers each one cited 6 times
- author b_2 : 3 papers each one cited 6 times
 - h-index of both authors is 3
 - h-index of the department is 6

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
 - the h-index of an author is x if this author has x papers having at least x citations each (and her other papers have at most x citations each)

Department $a = (a_1, a_2)$

- author a_1 : 4 papers each one cited 4 times
- author a_2 : 4 papers each one cited 4 times
 - h-index of both authors is 4
 - h-index of the department is 4

Department $b = (b_1, b_2)$

- author b_1 : 3 papers each one cited 6 times
- author b_2 : 3 papers each one cited 6 times
 - h-index of both authors is 3
 - h-index of the department is 6

Conclusion

• the "best" department contains the "worst" authors!

Bart summarizes

I will not use the h-index anymore I will not use the h-index anymore

Outline

- Bibliometrics
- 2 Model & Results
- 3 Discussion

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- f(x) is the number of papers by this author having received x citations

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- f(x) is the number of papers by this author having received x citations

Set of all Authors

• \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$\sum_{x \in \mathbb{N}} f(x) \text{ is finite}$$

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- f(x) is the number of papers by this author having received x citations

Set of all Authors

• \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$\sum_{x \in \mathbb{N}} f(x) \text{ is finite}$$

Objective

- build a binary relation \succeq on \mathscr{A}
- $f \succeq g$ is "given their publication/citation record, scientists f is at least as good as scientist q"

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- f(x) is the number of papers by this author having received x citations

Set of all Authors

• \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$\sum_{x \in \mathbb{N}} f(x) \text{ is finite}$$

Objective

- build a binary relation \succeq on \mathscr{A}
- $f \succeq g$ is "given their publication/citation record, scientists f is at least as good as scientist q"

Important Limitation

• coauthors are ignored in this talk

Notation and remarks

Notation

- 0 is an author without any paper
- $\mathbf{1}_x$ is an author with 1 paper having received x citations

Notation and remarks

Notation

- **0** is an author without any paper
- $\mathbf{1}_x$ is an author with 1 paper having received x citations

Remarks

Authors are modelled as functions

- it makes sense to add two authors f and g: f + g
- it makes sense to multiply an author f by an integer n: $n \cdot f$

Departments

• a department of size k is an element of \mathscr{A}^k : (f_1, f_2, \ldots, f_k)

Departments

• a department of size k is an element of \mathscr{A}^k : (f_1, f_2, \dots, f_k)

Set of all Departments

$$\mathscr{D} = \bigcup_{k \in \mathbb{N}} \mathscr{A}^k$$

Departments

• a department of size k is an element of \mathscr{A}^k : (f_1, f_2, \ldots, f_k)

Set of all Departments

$$\mathscr{D} = \bigcup_{k \in \mathbb{N}} \mathscr{A}^k$$

Objective

- build a binary relation \trianglerighteq on \mathscr{D}
- $A \supseteq B$ is "given their publication/citation record of the scientists in departments A and B, department A is at least as good as department B"

Departments

• a department of size k is an element of \mathscr{A}^k : (f_1, f_2, \ldots, f_k)

Set of all Departments

$$\mathscr{D} = \bigcup_{k \in \mathbb{N}} \mathscr{A}^k$$

Objective

- build a binary relation \trianglerighteq on \mathscr{D}
- $A \supseteq B$ is "given their publication/citation record of the scientists in departments A and B, department A is at least as good as department B"

Limitations

- multiple affiliations are ignored
- field normalization is ignored

Consistency

Let $A = (a_1, a_2, \dots, a_k)$ and $B = (b_1, b_2, \dots, b_k)$ be two departments of size k.

If $a_i \succeq b_i$, for all $i \in \{1, 2, \dots, k\}$ then $A \succeq B$

Furthermore if $a_i \succ b_i$, for some $i \in \{1, 2, ..., k\}$ then $A \triangleright B$

Consistency

Let $A = (a_1, a_2, \dots, a_k)$ and $B = (b_1, b_2, \dots, b_k)$ be two departments of size k.

If $a_i \succeq b_i$, for all $i \in \{1, 2, ..., k\}$ then $A \supseteq B$

Furthermore if $a_i \succ b_i$, for some $i \in \{1, 2, ..., k\}$ then $A \triangleright B$

Independence

For all $f, g \in \mathcal{A}$ and all $x \in \mathbb{N}$

$$f \succsim g \Leftrightarrow f + \mathbf{1}_x \succsim g + \mathbf{1}_x$$

Consistency

Let $A = (a_1, a_2, \dots, a_k)$ and $B = (b_1, b_2, \dots, b_k)$ be two departments of size k.

If $a_i \succeq b_i$, for all $i \in \{1, 2, ..., k\}$ then $A \triangleright B$

Furthermore if $a_i \succ b_i$, for some $i \in \{1, 2, ..., k\}$ then $A \triangleright B$

Independence

For all $f, g \in \mathcal{A}$ and all $x \in \mathbb{N}$

$$f \succsim g \Leftrightarrow f + \mathbf{1}_x \succsim g + \mathbf{1}_x$$

Transfer

For all $A = (a_1, a_2, \dots, a_k) \in \mathcal{D}$, all $i, j \in \{1, 2, \dots, k\}$ and all $x \in \mathbb{N}$ $(a_1,\ldots,a_i+\mathbf{1}_x,\ldots,a_k) \triangleq (a_1,\ldots,a_i+\mathbf{1}_x,\ldots,a_k)$

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
 - "Inequalities" within departments are ignored

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
 - "Inequalities" within departments are ignored

Proposition 1

If \succeq and \trianglerighteq are linked by Consistency and if \trianglerighteq satisfies Transfer then \succsim satisfies Independence

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
 - "Inequalities" within departments are ignored

Proposition 1

If \succeq and \trianglerighteq are linked by Consistency and if \trianglerighteq satisfies Transfer then \succsim satisfies Independence

Corollary

If \succeq is the ranking of authors based on the h-index then there is no \trianglerighteq such that Transfer and Consistency hold

Scoring rules for scientists

Definition 1

 \succsim is a scoring rule for scientists (s-scoring rule) if there is a real valued function u on \mathbb{N} such that

$$f \succsim g \Leftrightarrow \sum_{x \in \mathbb{N}} f(x) u(x) \geq \sum_{x \in \mathbb{N}} g(x) u(x)$$

- u(x) gives the worth of one publication with x citations
- \bullet many bibliometric indices are scoring rules (but not the h-index)
- all scoring rules satisfy independence

Scoring rules for scientists

Definition 1

 \succsim is a scoring rule for scientists (s-scoring rule) if there is a real valued function u on \mathbb{N} such that

$$f \succsim g \Leftrightarrow \sum_{x \in \mathbb{N}} f(x) u(x) \ge \sum_{x \in \mathbb{N}} g(x) u(x)$$

- u(x) gives the worth of one publication with x citations
- many bibliometric indices are scoring rules (but not the h-index)
- all scoring rules satisfy independence

Examples

- u(x) = x: number of citations
- u(x) = 1: number of publications
- u(x) = 1 if $x \ge \alpha$: number of highly cited publications

Rules for departments

Definition 2

 \trianglerighteq is a scoring rule for departments (d-scoring rule) if there is a real valued function v on \mathbb{N} such that

$$(a_1, a_2, \dots, a_k) \trianglerighteq (b_1, b_2, \dots, b_\ell) \Leftrightarrow \sum_{i=1}^k \sum_{x \in \mathbb{N}} a_i(x)v(x) \ge \sum_{i=1}^\ell \sum_{x \in \mathbb{N}} b_i(x)v(x)$$

Rules for departments

Definition 2

 \trianglerighteq is a scoring rule for departments (d-scoring rule) if there is a real valued function v on \mathbb{N} such that

$$(a_1, a_2, \dots, a_k) \trianglerighteq (b_1, b_2, \dots, b_\ell) \Leftrightarrow \sum_{i=1}^k \sum_{x \in \mathbb{N}} a_i(x)v(x) \ge \sum_{i=1}^\ell \sum_{x \in \mathbb{N}} b_i(x)v(x)$$

Definition 3

 \trianglerighteq is an averaging rule for departments (d-averaging rule) if there is a real valued function v on $\mathbb N$ such that

$$(a_1, a_2, \dots, a_k) \trianglerighteq (b_1, b_2, \dots, b_\ell) \Leftrightarrow \frac{1}{k} \sum_{i=1}^k \sum_{x \in \mathbb{N}} a_i(x) v(x) \ge \frac{1}{\ell} \sum_{i=1}^\ell \sum_{x \in \mathbb{N}} b_i(x) v(x)$$

Archimedeanness

For all $f, g, f', g' \in \mathscr{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f' + (n \cdot f) \succsim g' + (n \cdot g)$

Archimedeanness

For all $f, g, f', g' \in \mathscr{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f' + (n \cdot f) \succeq g' + (n \cdot g)$

Dummy Scientist

For all $k \in \mathbb{N}$ and all $(a_1, a_2, \dots, a_k) \in \mathcal{D}$ $(a_1, a_2, \dots, a_k) \triangleq (a_1, a_2, \dots, a_k, \mathbf{0})$

Archimedeanness

For all $f, g, f', g' \in \mathcal{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f' + (n \cdot f) \succeq g' + (n \cdot g)$

Dummy Scientist

For all $k \in \mathbb{N}$ and all $(a_1, a_2, \dots, a_k) \in \mathcal{D}$ $(a_1, a_2, \dots, a_k) \triangleq (a_1, a_2, \dots, a_k, \mathbf{0})$

Homogeneity

For all
$$k, n \in \mathbb{N}$$
 and all $(a_1, a_2, \dots, a_k) \in \mathcal{D}$

$$(a_1, a_2, \dots, a_k) \triangleq (\underbrace{a_1, a_1, \dots, a_1}_{n}, \underbrace{a_2, a_2, \dots, a_2}_{n}, \dots, \underbrace{a_k, a_k, \dots, a_k}_{n})$$

Remarks

- all s-scoring rules satisfy Archimedeanness
- Dummy Scientist is satisfied by d-scoring rules but not by d-averaging rules
- Homogeneity is satisfied by d-averaging rules but not by d-scoring rules

Some results

Theorem 1 (B & Marchant, 2011)

The relations \succeq and \trianglerighteq are linked by Consistency, \trianglerighteq satisfies Transfer and Dummy Scientist, ≿ satisfies Archimedeanness if and only if

 \succeq is an s-scoring rule and \trianglerighteq is a d-scoring rule with u=v

The function u is unique up to the multiplication by a positive constant

Some results

Theorem 1 (B & Marchant, 2011)

The relations \succeq and \trianglerighteq are linked by Consistency, \trianglerighteq satisfies Transfer and Dummy Scientist, \succeq satisfies Archimedeanness if and only if

 \succeq is an s-scoring rule and \trianglerighteq is a d-scoring rule with u=v

The function u is unique up to the multiplication by a positive constant

Theorem 2 (B & Marchant, 2011)

The relations \succeq and \trianglerighteq are linked by Consistency, \trianglerighteq satisfies Transfer and Homogeneity, ≿ satisfies Archimedeanness

if and only if

 \succeq is an s-scoring rule and \supseteq is a d-averaging rule with u=v

The function u is unique up to the multiplication by a positive constant

Extensions

Extensions

- add additional conditions to restrict the shape of u
 - *u* is nondecreasing
 - u is constant
 - \bullet *u* is linear
- characterize indices instead of rankings

Easy!

Outline

- Bibliometrics
- 2 Model & Results
- 3 Discussion

Discussion of results

Axioms

- Consistency is highly desirable
- Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity & inequality)

Discussion of results

Axioms

- Consistency is highly desirable
- Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity & inequality)

Extensions

- coauthors
- multiple affiliations
- field normalization

Discussion of results

Axioms

- Consistency is highly desirable
- \bullet Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity & inequality)

Extensions

- coauthors
- multiple affiliations
- field normalization

Warning

• beware of institutions using the h-index!

Messages

Bibliometrics

- \bullet bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Messages

Bibliometrics

- bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Evaluative bibliometrics in practice

- it should be used with much care
- it should not be in the hands of laypersons
- it should not be entrenched in formal rules
- it can be useful if used together with careful and impartial peer review

Messages

Bibliometrics

- bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Evaluative bibliometrics in practice

- it should be used with much care
- it should not be in the hands of laypersons
- it should not be entrenched in formal rules
- it can be useful if used together with careful and impartial peer review

Excellence: IDEX, LABEX, PES

- excellence is another word for outliers
 - not everyone can be excellent!
 - what should we do with people that are not excellent?
 - is the mantra of excellence a good motivating tool?

References

Adler, R., Ewing, J., Taylor, P. (2009) Citation statistics

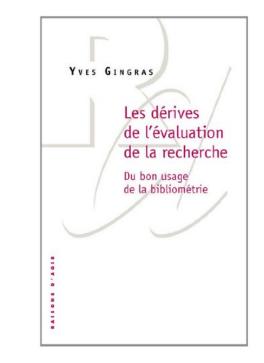
Statistical Science, 24 (1), 1–14

Billaut, J.-C., Bouyssou, D., Vincke, Ph. (2011) Should you believe in the Shanghai ranking? An MCDM view Scientometrics, 84 (1), 237–263

Bouyssou, D., Marchant, T. (2011)

Ranking scientists and departments in a consistent manner Journal of the American Society for Information Science and Technology, 62 (9), 1761–1769

Bouyssou, D., Marchant, T. (2013) New characterizations of the *h*-index Working Paper, LAMSADE, 54 pages



Marchant, T. (2009)

Score-Based Bibliometric Rankings of Authors

Journal of the American Society for Information Science and Technology, 60 (6),

1132–1137

Bart summarizes

I will not be narcissistic anymore I will not be narcissistic anymore

